Third Grade Physical Science Grade Standards, Supporting Skills, and Examples Indicator 1: Describe structures and properties of, and changes in, matter. | Bloom's Taxonomy
Level | Standard, Supporting Skills, and Examples | |---------------------------|--| | (Comprehension) | 3.P.1.1. Students are able to describe physical properties of matter using the senses (touch, smell, etc.). | | | Examples : color, size, shape, hardness, opacity, flexibility, texture, smell, temperature, weight | | | • Define the five senses. | | | Define solid, liquid, and gas. | | (Application) | 3.P.1.2. Students are able to use tools to relate composition to physical properties. | | | Example: Use a magnifying glass to observe that matter is made of component parts. | | | Describe the basic characteristics of matter in relation to space and mass. Recognize changes in matter from one state to another | | | using water. | | (Application) | 3.P.1.3. Students are able to demonstrate how a different substance can be made by combining two or more substances. | | | Identify a mixture. | | | Examples: Flour and water make paste. Flour, water, and salt make play-dough. | Indicator 2: Analyze forces, their forms, and their effects on motions. | Bloom's Taxonomy
Level | Standard, Supporting Skills, and Examples | |---------------------------|---| | | (Mastery of this indicator does not emerge until fourth grade.) | Indicator 3: Analyze interactions of energy and matter. | Bloom's Taxonomy
Level | Standard, Supporting Skills, and Examples | |---------------------------|--| | | 3.P.3.1. Students are able to define energy and differentiate between sources of renewable and non-renewable energy. | | (Knowledge) | Describe renewable and non-renewable energy. | | | Examples, renewable: wind and water | | | Examples, non-renewable: coal and oil | | | 3.P.3.2. Students are able to demonstrate how sound consists of vibrations and pitch. | | | Relate the rate of vibration to the pitch of sound. | | (Application) | Example: tuning fork vibrations | | | Low tones are caused by slow vibrations; high tones are
caused by fast vibrations. | | | Example: Varied levels of water in glass containers being struck create different pitches. | | | 3.P.3.3. Students are able to identify how sound is used as a means of communication. | | (Knowledge) | Give examples of kinds of communication. | | | Examples: telephone ringing, train whistle, fire alarm, sirens, voice, and animal noises | ### Third Grade Physical Science Performance Descriptors | | Third grade students performing at the advanced level: | |--|--| | | • compare and contrast the physical properties of granite and | | Advanced | calcite; | | Auvanceu | predict what would happen if we overused a renewable or | | | non-renewable energy/resource; | | | demonstrate how sound travels. | | Third grade students performing at the proficient level: | | | | use a magnifying glass to observe and describe the | | | physical properties of a rock; | | | demonstrate how individual materials combine to make a | | Proficient | different substance; | | I I Officient | define energy and label pictures of renewable and non- | | | renewable energy; | | | demonstrate how sound consists of vibrations and how | | | pitch changes; | | | explain the different ways sound is used to communicate. | | | Third grade students performing at the basic level: | |-------|--| | | recognize physical properties of object; | | Basic | use flour and water to make a substance; | | | sort pictures of renewable and non-renewable energy; | | | recognize different pitches. | Third Grade Physical Science ELL Performance Descriptors | ELL Performance Descriptors | | |-----------------------------|--| | | Third grade ELL students performing at the proficient | | Proficient | level: | | | recognize physical properties of objects (solids, liquids, | | | gases); | | | sort pictures of renewable and non-renewable energy; | | | recognize different pitches. | | | Third grade ELL students performing at the intermediate | | | level: | | Intermediate | know that objects have physical properties; | | | sort pictures of renewable energy; | | | name different pitches. | | | Third grade ELL students performing at the basic level: | | | name one physical property of a given object; | | | sort pictures of energy sources; | | | know that different pitches exist; | | Basic | participate in science activities and experiments with | | | other students: | | | use correct pronunciation of science words; | | | respond correctly to yes or no questions on topics | | | presented in class. | | | Third grade ELL students performing at the emergent | | | level: | | Emergent | use correct pronunciation of science words; | | | use non-verbal communication to express scientific | | | ideas. | | | Third grade ELL students performing at the pre-emergent | | | level: | | Pre-emergent | observe and model appropriate cultural and learning | | r re-emergent | behaviors from peers and adults; | | | listen to and observe comprehensible instruction and | | | communicate understanding non-verbally. | ### Fourth Grade Physical Science Grade Standards, Supporting Skills, and Examples Indicator 1: Describe structures and properties of, and changes in, matter. | Bloom's Taxonomy
Level | Standards, Supporting Skills, and Examples | |---------------------------|--| | (Comprehension) | 4.P.1.1. Students are able to describe observable physical changes and properties in matter. | | | Examples: solubility (matter dissolving into water) and density (floating and sinking) | | | Define matter. | | (Analysis) | 4.P.1.2. Students are able to explain how some physical properties remain the same as the mass is changed. | | | Example : A block of salt will taste the same as a grain of salt. | | | Define mass. | | (Comprehension) | 4.P.1.3. Students are able to differentiate between the states of matter caused by changes in temperature using water. | | | Example: from ice to water to water vapor | | | Define states of matter. | Indicator 2: Analyze forces, their forms, and their effects on motions. | Bloom's Taxonomy
Level | Standard, Supporting Skills, and Examples | |---------------------------|---| | | 4.P.2.1. Students are able to demonstrate how forces act over a distance. | | (Application) | Example: magnetism | | | Define force. | Indicator 3: Analyze interactions of energy and matter. | Bloom's Taxonomy
Level | Standard, Supporting Skills, and Examples | |---------------------------|---| | (Knowledge) | 4.P.3.1. Students are able to identify materials as being conductors or insulators of electricity. | | | Examples: aluminum, wood, paper, plastic, glass, rubber band, iron, and steel | | | Define a conductor and an insulator. | | (Application) | 4.P.3.2. Students are able to construct and define a simple circuit. | | | Examples: open and closed circuits | | (| Give examples of simple circuits. | | | ✓ Define parallel and series circuits. | | (Application) | 4.P.3.3. Students are able to use magnets, electromagnets, magnetic fields, and compasses to explore magnetic energy. | | | Define magnets and their properties. | | | ✓ Explain that electrical circuits can produce magnetic force. | | | ✓ Demonstrate polarity using magnets and dry cells. | # Fourth Grade Physical Science Performance Descriptors | | Fourth grade students performing at the advanced level: | |---|---| | | • create water vapor; | | Advanced | design an electromagnet; | | Auvanceu | design an invention which conducts electricity; | | | demonstrate the difference between parallel and series | | | circuits. | | Fourth grade students performing at the proficient level: | | | | describe what happens to water when it is heated or cooled; | | Proficient | use magnets to define and demonstrate force at varying | | Fioricient | distances; | | | sort materials by their conductivity; | | | construct and define a simple electrical circuit. | | | Fourth grade students performing at the basic level: | | Basic | identify the three states of water; | | | explore the capabilities of magnets; | | | construct a simple electrical circuit. | Fourth Grade Physical Science ELL Performance Descriptors | | Fourth grade ELL students nerforming at the profisiont | |--------------|--| | Proficient | Fourth grade ELL students performing at the proficient | | | level: | | | • identify the three states of water; | | | know that magnets attract and repel; | | | construct a simple electrical circuit; | | | ask questions related to science topics. | | | Fourth grade ELL students performing at the intermediate | | | level: | | | identify two states of water; | | Intermediate | recognize the capabilities of magnets; | | | identify a simple electrical circuit; | | | give simple oral responses to questions on topics | | | presented in class. | | | Fourth grade ELL students performing at the basic level: | | | identify the liquid state of water; | | | explore magnets; | | | know that simple electrical circuits exist; | | Basic | • participate in science activities and experiments with | | | other students; | | | use correct pronunciation of science words; | | | respond correctly to yes or no questions on topics | | | presented in class. | | | Fourth grade ELL students performing at the emergent level: | | Emergent | use correct pronunciation of science words; | | | • use non-verbal communication to express scientific ideas. | | | Fourth grade ELL students performing at the pre-emergent | | | level: | | D | observe and model appropriate cultural and learning | | Pre-emergent | behaviors from peers and adults; | | | listen to and observe comprehensible instruction and | | | communicate understanding non-verbally. | ### Fifth Grade Physical Science Grade Standards, Supporting Skills, and Examples Indicator 1: Describe structures and properties of, and changes in, matter. | Bloom's Taxonomy
Level | Standard, Supporting Skills, and Examples | |---------------------------|--| | (Knowledge) | 5.P.1.1. Students are able to define matter on the basis of observable physical properties. | | | Examples: mass, volume, density, magnetism, physical state, and the ability to conduct heat, electricity, and sound | | | • Explain the relationships among elements, molecules, and matter. | | | Examples: carbon dioxide, water | | | ✓ Explain differences and similarities between a solution and other mixtures and changes that occur within. | | | Examples: solution (sugar dissolving in water) and mixture (trail mix) | Indicator 2: Analyze forces, their forms, and their effects on motions. | Bloom's Taxonomy
Level | Standard, Supporting Skills, and Examples | |---------------------------|--| | (Knowledge) | 5.P.2.1. Students are able to identify forces in specific situations that require objects to interact, change directions, or stop. | | | Give examples of ways gravitational forces affect every object. | | (Analysis) | 5.P.2.2. Students are able to analyze the structure and design of simple and compound machines to determine how the machines make work easier by trading force for distance. | | | Distinguish between simple and compound machines. | | | Examples: lever, pulley, wheel, axle, inclined plane, wedge, screw | | | Example: how scissors cut paper | Indicator 3: Analyze interactions of energy and matter. | Bloom's Taxonomy
Level | Standard, Supporting Skills, and Examples | |---------------------------|--| | (Application) | 5.P.3.1. Students are able to demonstrate and explain how to measure heat flow into an object. | | | Example : Measure temperatures of various materials placed in sunlight. | | | Interpret a thermometer. | | (Correspondence) | 5.P.3.2. Students are able to describe the Sun's ability to produce energy in the forms of light and heat. | | | Understand that the Sun produces energy. | | | Example: energy from the Sun stored in coal and plants | | | ✓ Describe significant characteristics of different forms of energy. | | | ✓ Explain energy transfers and transformation of light. | | (Correspondence) | 5.P.3.3. Students are able to describe basic properties of light. | | | Examples: reflection, scattering, color spectrum, shadows | ## Fifth Grade Physical Science Performance Descriptors | | Fifth grade students performing at the advanced level: | | |--|---|--| | Advanced | demonstrate how compound machines make work easier | | | | by trading force for distance. | | | Fifth grade students performing at the proficient level: | | | | | identify matter according to its observable physical | | | | properties; | | | | demonstrate how simple machines make work easier by | | | Proficient | trading force for distance; | | | | measure the temperature of two different objects to | | | | compare heat flow; | | | | describe basic properties of light (reflection, scattering, | | | | color spectrum, shadows). | | | | Fifth grade students performing at the basic level: | | | | • define matter; | | | Basic | identify a simple machine; | | | | measure temperature; | | | | identify the spectrum of light. | | Fifth Grade Physical Science ELL Performance Descriptors | | Fifth grade ELL students performing at the proficient level: | | |---|---|--| | Proficient | • define matter; | | | | identify a simple machine; | | | | measure temperature; | | | | identify the spectrum of light; | | | | | | | | ask questions related to science topics. Fifth and a FILL students menforming at the intermediate. | | | Intermediate | Fifth grade ELL students performing at the intermediate level: | | | | | | | | • use appropriate vocabulary to describe matter (volume, | | | | mass, density); | | | | • name a simple machine; | | | | measure temperature; | | | | name the colors observed in the spectrum of light; | | | | give simple oral responses to questions on topics | | | | presented in class. | | | Fifth grade ELL students performing at the basic level: | | | | | use appropriate vocabulary to describe solids; | | | | know that simple machines exist; | | | | recognize a thermometer; | | | Basic | recognize the different colors in the spectrum of light; | | | Dasic | participate in science activities and experiments with | | | | other students; | | | | use correct pronunciation of science words; | | | | respond correctly to yes or no questions on topics | | | | presented in class. | | | _ | Fifth grade ELL students performing at the emergent level: | | | Emergent | use correct pronunciation of science words; | | | | • use non-verbal communication to express scientific ideas. | | | | Fifth grade ELL students performing at the pre-emergent | | | | level: | | | Pre-emergent | observe and model appropriate cultural and learning | | | | behaviors from peers and adults; | | | | listen to and observe comprehensible instruction and | | | | communicate understanding non-verbally. | |